
863

0022-4715/01/1200-0863/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 105, Nos. 5/6, December 2001 (© 2001)

Constructive Approximations of Markov Operators

Jiu Ding1 and Aihui Zhou2

1 Department of Mathematics, The University of Southern Mississippi, Hattiesburg, Mississippi
39406-5045; e-mail: jding@yizhi.st.usm.edu

2 Institute of Computational Mathematics, and Scientific/Engineering Computing, Academy
of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, People’s
Republic of China.

Received June 19, 2000; revised May 2, 2001

We construct piecewise linear Markov finite approximations of Markov opera-
tors defined on L1([0, 1]N) and we study various properties, such as consis-
tency, stability, and convergence, for the purpose of numerical analysis of
Markov operators.
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1. INTRODUCTION

In this paper we propose a class of continuous piecewise linear approxima-
tions to Markov operators defined on L1(IN), where IN — [0, 1]N is the
N-dimensional unit cube ofRN, and we investigate various properties of such
approximations. A unique feature of the analysis is that we can obtain the
explicit constant for the stability of the numerical scheme, which is impor-
tant for error estimates of computing fixed densities of Markov operators.
A bounded linear operator P: L1(IN)Q L1(IN) is called a Markov operator
if it is positive and preserves the L1-norm of nonnegative functions.
Markov operators are widely used in studying density evolution problems
in partial differential equations, stochastic processes, discrete and continu-
ous dynamical systems, and so on. In physical sciences densities are also
employed for a stochastic description of the distribution of some physical
quantities under the dynamical system. (1) An important subclass of Markov
operators is the class of Frobenius–Perron operators in ergodic theory for



finding absolutely continuous invariant measures (also called physical
measures) of chaotic dynamics. A classic book on Markov operators is
ref. 7, and a recent monograph by Lasota and Mackey (12) extensively studied
various Markov operators and their applications in physical sciences, such
as the approach of the Markov operators semigroup to the stochastic per-
turbation of discrete or continuous time systems and in particular to Fokker–
Planck equations.

Because of the many applications of Markov operators in applied
fields, their finite dimensional approximations are important in numerically
solving the Markov operator equation Pf=f for a fixed density, that is a
fixed point of P which is also nonnegative with L1-norm 1. Fixed densities
usually describe the asymptotic statistical behavior of the underlying
dynamical system. In developing efficient numerical methods it is desirable
to preserve the physical structure of the operator. Usual numerical methods
for solving operator equations, such as the Galerkin projection method and
its variants, do not preserve the positivity of the Markov operator. In
applications, however, we often require that a computed approximate fixed
point be also a density. Thus, it is ideal to construct an approximate
operator which is also a Markov operator of finite rank to guarantee the
existence of an approximate fixed density according to the Frobenius–
Perron theory for stochastic matrices. In this paper we present a numerical
scheme of piecewise linear Markov approximations for a Markov operator
P: L1(IN)Q L1(IN). This scheme has an origin in Ulam’s famous book (17)

in which a piecewise constant approximation method was proposed which
was extensively studied in Li’s pioneering work (14) to prove its convergence
for computing a fixed density of theFrobenius–Perron operatorP: L1(0, 1)Q
L1(0, 1) associated with a piecewise C2 and stretching mapping S: [0, 1]Q
[0, 1].

The Markov approximation scheme was first proposed in ref. 4 to
improve the convergence rate of Ulam’s original method, and was extended
in ref. 6 for solving the fixed density problem of the Frobenius–Perron
operator P corresponding to a piecewise C2 and expanding mapping of the
unit square [0, 1]2 in the plane. Here we construct the scheme for a
Markov operator on L1(IN) for any N, and we will study various impor-
tant properties for this class of approximations, in particular some stability
result with an explicit constant will be established in terms of the variation
norm.

Although Ulam’s original piecewise constant method is also a structure
preserving method, that is, the corresponding finite dimensional approxi-
mate operator maps densities to densities, its convergence rate under the
L1-norm, when applied to computing fixed densities of Frobenius–Perron
operators for some classes of mappings, is only of order O(ln n/n). (11, 15, 2)
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Our method of piecewise linear approximations is shown to have the
convergence rate of O(1/n) even under the stronger BV-norm which will be
defined below and is widely used in the convergence analysis of Markov
operators. (4, 5) Therefore the scheme of piecewise linear Markov approxima-
tions studied in this paper seems an ideal numerical method for computing
stationary densities of Markov operators, due to the above mentioned two
facts of structure-preserving and fast convergence.

In the next section the Markov approximation will be introduced and
some elementary properties will be given. In Section 3 a result on a uniform
variation upper bound and the convergence in the BV-norm will be proved.
Some application and numerical results will be given in Section 4.

2. PIECEWISE LINEAR MARKOV APPROXIMATIONS

In this paper we let |x| —`x2
1+·· ·+x2

N denote the Euclidean 2-norm
of a vector x ¥ RN, and we let ||f|| — >IN |f| dm denote the L1-norm of
f ¥ L1(IN), where m is the Lebesgue measure. Let P: L1(IN)Q L1(IN) be a
Markov operator. Our purpose is to define a sequence of Markov opera-
tors Pn of finite rank that approximate P nicely. For this purpose we need
to find a sequence of finite dimensional Markov operators that approxi-
mate the identity operator I.

Let the interval I=[0, 1] be divided into n equal subintervals with
length h=1/n, and consequently the unit N-cube IN is partitioned into nN

equal sub-cubes of volume hN. Then each sub-cube is divided into N!
simplices of equal volume hN/N! in the standard way. Specifically, let x0

with each component x0
i < 1 be a node of the partition and let s be a

permutation of {1, 2,..., N}. For i=1,..., N define x i in succession by just
adding h to the s(i)th component of x i−1. All such simplices e=
conv{x0, x1,..., xN} constitute a standard triangulation Tn of IN, which is
sometimes referred to as Kuhn’s Triangulation. (16) Tn consists of nNN!
simplices {ei} with (n+1)N vertices {vj}. It is well-known that Tn is a shape-
regular and symmetric triangulation. In the following we let yv denote the
number of the simplices of Tn with v as a vertex.

Lemma 2.1. Let c=[x0
1, x

0
1+h]× · · · ×[x

0
N, x

0
N+h] be a cube of

the partition of IN, and let v=(x1,..., xN) be a vertex of c such that the
number of i’s with xi=x0

i is l. Then the number of simplices of Tn in c is
l ! (N−l)!.

Proof. This is from the definition of Kuhn’s triangulation and the
fact that the number of permutations of {1,..., l} and {l+1,..., N} is l ! and
(N−l)!, respectively. L
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The number l in the lemma will be called the relative number of zeros
of the vertex with respect to the starting vertex of the cube.

Proposition 2.1. Let r, s, t be nonnegative integers with sum N. Let
v=(x1,..., xN) be a vertex of Tn such that xi1=·· ·=xir=0, xj1=·· ·=
xjs=1, and 0 < xk1 ,..., xkt < 1. Then

yv=N! 5C
0
t

C r
N

+
C1

t

C r+1
N

+·· ·+
C t−1

t

C r+t−1
N

+
C t

t

C r+t
N

6 ,

where C j
i=

i !
(i− j)! j !.

Proof. It is clear that v is a vertex of 2 t N-cubes of the partition of
IN, each of which is the Cartesian product of r intervals [0, h], s intervals
[1−h, 1], and t intervals of the type [xk−h, xk] or [xk, xk+h]. Among
them, there are C0

t cubes with v as a vertex of the relative number of zeros
r, C1

t cubes with v as a vertex of the relative number of zeros r+1,..., C t
t

cubes with v as a vertex of the relative number of zeros r+t. Thus, by
Lemma 2.1,

yv=C0
t r! (N−r)!+C

1
t (r+1)! (N−r−1)!

+· · ·+C t−1
t (r+t−1)! (N−r−t+1)!+C t

t(r+t)! (N−r−t)!

=C0
t

N!
C r

N

+C1
t

N!
C r+1

N

+·· ·+C t−1
t

N!
C r+t−1

N

+C t
t

N!
C r+t

N

=N! 5C
0
t

C r
N

+
C1

t

C r+1
N

+·· ·+
C t−1

t

C r+t−1
N

+
C t

t

C r+t
N

6 L

Remark 2.1. Since i ! (N−i)! \ [C(N/2)]2 for i=0, 1,..., N, a
lower bound of yv is 2 t[C(N/2)]2.

Corollary 2.1. Let v be an interior vertex of Tn. Then yv=(N+1)!.

Proof. In this case, r=0, s=0, and t=N. L

Corollary 2.2. Let v be a relative interior vertex in the N−r dimen-
sional face xi1=·· ·=xir=0 of IN. Then

yv=N! 5C
0
N−r

C r
N

+
C1

N−r

C r+1
N

+·· ·+
CN−r−1

N−r

CN−1
N

+
CN−r

N−r

CN
N

6 \N!.

866 Ding and Zhou



Proof. Here s=0 and t=N−r. L

Corollary 2.3. Let v be a relative interior vertex in the N−s dimen-
sional face xj1=·· ·=xjs=1 of IN. Then

yv=N! 5C
0
N−s

C0
N

+
C1

N−s

C1
N

+·· ·+
CN−s−1

N−s

CN−s−1
N

+
CN−s

N−s

CN−s
N

6 \N!.

Proof. Now r=0 and t=N−s. L

Corollary 2.4. Let v be a vertex of IN such that xi1=·· ·=xir=0
and xj1=·· ·=xjN−r

=1. Then yv=r! (N−r)! \ [C(N/2)]2.

Proof. The result is true since t=0. L

Let Dn be the set of all continuous piecewise linear functions corre-
sponding to the triangulation Tn. Then Dn is an (n+1)N-dimensional sub-
space of L1(IN). Denote by fi the unique element in Dn such that

fi(vj)=dij, i, j=1,..., (n+1)N,

where dij=1 for i=j and dij=0 otherwise. Then {fi} is the canonical
basis for Dn. In fact for each g ¥ Dn,

g= C
(n+1)N

i=1
g(vi) fi.

Now we define the operator Qn: L1(IN)Q L1(IN) by

Qnf= C
(n+1)N

i=1
fifi,

where for each i,

fi=
1

m(Vi)
F
Vi
f dm=

N!
yihN F

Vi
f dm

is the average value of f over Vi. Here Vi is the union of all the yi simplices
of Tn that have vi as a vertex. Note that fi \ 0, its support supp fi of fi
is Vi, and its L1-norm

||fi ||=
yihN

(N+1)!
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for each i. Moreover,

C
(n+1)N

i=1
fi(x) — 1.

Proposition 2.2. Qn: L1(IN)Q L1(IN) is a Markov operator.

Proof. It is clear that Qn is a positive linear operator with range
R(Qn)=Dn. Let f ¥ L1(IN) be nonnegative. Then

F
IN
Qnf dm= C

(n+1)N

i=1
fi F

IN
fi dm

= C
(n+1)N

i=1

N!
yihN F

Vi
f dm

yihN

(N+1)!

=
1

N+1
C

(n+1)N

i=1
F
Vi
f dm=F

IN
f dm,

where the last equality follows from the fact that each simplex has exactly
N+1 vertices. L

Proposition 2.3. There is a constant C independent of n such that

||Qnf−f|| [ Ch F
IN
|grad f| dm, -f ¥W1, 1(IN), (1)

where grad f=(“f/“x1,..., “f/“xN)T is the gradient of f in the weak
sense of Sobolev andW1, 1(IN) is the usual Sobolev space.

Proof. By (7.45) in ref. 8, for each i,

F
Vi
|f−fi | dm [ 1 wN

m(Vi)
21−

1
N

dN
i F

Vi
|grad f| dm,

where wN=
2pN/2

NC(N/2) is the volume of the unit ball in RN and di=diam Vi.
Since Vi is contained in an N-cube of side 2h centered at vi (in fact the
N-cube is the union of the 2N cubes of the partition of IN with vi as a
common vertex), di [ 2`N h. Also note that m(Vi)=yihN/N!, so

F
Vi
|f−fi | dm [ 1wNN!

yihN
21−

1
N

(2`N h)N F
Vi
|grad f| dm

=1wNN!
yi
21−

1
N

(4N)
N
2 h F

Vi
|grad f| dm.
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Because of (5),

|Qnf(x)−f(x)|=: C
(n+1)N

i=1
fifi(x)− C

(n+1)N

i=1
f(x) fi(x) :

[ C
(n+1)N

i=1
|fi−f(x)| fi(x).

Since supp fi=Vi and yi \ (C(N/2))2, from the above

||Qnf−f|| [ C
(n+1)N

i=1
F
Vi
|f−fi | dm

[ C
(n+1)N

i=1

1wNN!
yi
21−

1
N

(4N)
N
2 h F

Vi
|grad f| dm

[ r
wNN!

1C 1N
2
222s

1− 1
N

(4N)
N
2 h C

(n+1)N

i=1
F
Vi
|grad f| dm

=r
wNN!

1C 1N
2
222s

1− 1
N

(4N)
N
2 (N+1) h F

IN
|grad f| dm.

Hence (1) is true with

C=r
wNN!

1C 1N
2
222s

1− 1
N

(4N)
N
2 (N+1). L

3. VARIATION INEQUALITIES

The modern notion of variation for functions of several variables is
useful in many problems of dynamical systems and numerical analysis. In
particular it has played an important role in the existence problem and
numerical analysis of a class of Frobenius–Perron operators (see, e.g.,
refs. 10, 6 and references therein). In this section we will prove that the
Markov finite approximations sequence Qn defined in the previous section
will satisfy a uniform variation inequality, and an explicit expression of the
constant in the inequality is also available. This is a stability result under
the variation norm. Moreover, we will strengthen Proposition 2.3 by
proving a consistency result in the variation norm. Such results will be
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useful in the convergence analysis and error estimates of the Markov
approximation method in solving Markov operator equations.

Definition 3.1.(9) Let W be an open set in RN and f ¥ L1(W). The
number (including .)

V(f; W)=sup 3F
W

f div w dm : w ¥ C1
0(W; R

N), |w(x)| [ 1, x ¥ W4

is called the variation of f over W. If V(f; W) <., then f is said to be of
bounded variation in W. BV(W) denotes the space of all functions in L1(W)
with bounded variation.

Note that BV(W) is a Banach space under the norm ||f||BV — ||f||+
V(f; W), its closed unit ball is compact in L1(W) if W is bounded with
Lipschitz boundary, and the Sobolev space W1, 1(W) is a closed subspace of
BV(W) with V(f; W)=>W |grad f| dm for f ¥W1, 1(W). Some other prop-
erties are referred to ref. 9.

Lemma 3.1. Let e be a simplex in RN with vertices v0, v1,..., vN such
that |vk−vk−1 |=h and {vk−vk−1} are orthogonal to each other for k=
1,..., N. If g(x)=aTx+b on e, then

a=
1
h2 C

N

k=1
[g(vk)−g(vk−1)](vk−vk−1), (2)

and thus,

V(g; e)=|a| m(e)=
m(e)
h
1 C

N

k=1
(g(vk)−g(vk−1))22

1/2

. (3)

Proof. Since g(vk)=aTvk+b for k=0, 1,..., N,

aT(vk−vk−1)=g(vk)−g(vk−1), k=1,..., N.

Now the N×N matrix

1
h
[v1−v0,..., vN−vN−1]

is orthogonal, so (2) follows and (3) is immediate since g ¥W1, 1(e). L
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Now we estimate the variation of Qnf. First note that Qnf ¥W1, 1(IN)
since Qnf ¥ Dn. Let ei be the ith simplex of Tn, i=1,..., nNN!, and let
Qnf(x)=aT

i x+bi on ei. Then

V(Qnf; IN)= C
nNN!

i=1
|ai | m(ei)=

hN

N!
C
nNN!

i=1
|ai |. (4)

Denote by v i0,..., v
i
N the vertices of ei ordered naturally such that

{v ik−v
i
k−1} are orthogonal to each other for k=1,..., N. For k=0,..., N let

Qnf(v
i
k)=q i

k and let V i
k be the union of all the y ik simplices of Tn that have

v ik as a vertex. Recall that each q i
k is the average value of f over V i

k. By (4)
and Lemma 3.1,

V(Qnf; IN)=
hN−1

N!
C
nNN!

i=1

1 C
N

k=1
(q i

k−q
i
k−1)

221/2

[
hN−1

N!
C
nNN!

i=1
C
N

k=1
|q i

k−q
i
k−1 |. (5)

Theorem 3.1. There holds

V(Qnf; IN) [ CBVV(f; IN), -f ¥ BV(IN), -n, (6)

where the constant

CBV=
2N! (wNN!)

1− 1
N (4N+5)

N
2 [(N+1) N−1]

1C 1N
2
222(2−

1
N)

.

Proof. First we assume that f ¥W1, 1(IN). From (5), it is enough to
estimate |q i

k−q
i
k−1 |. By (7.45) in ref. 8,

|q i
k−q

i
k−1 |=:

1
m(V i

k)
F
Vi
k

f dm−q i
k−1
:

[
1

m(V i
k)

F
Vi
k

|f(x)−q i
k−1 | dm(x)

[
1

m(V i
k)

F
Vi
k 2 Vi

k−1

|f(x)−q i
k−1 | dm(x)

[
1

m(V i
k)
1 wN

m(V i
k−1)
21−

1
N

dN
ik F

Vi
k 2 Vi

k−1

|grad f| dm,
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where dik=diam(V i
k 2 V i

k−1). Since m(V i
k)=y

i
kh

N/N!, y ik \ (C(N/2))
2,

and dik [`4N+5 h,

|q i
k−q

i
k−1 | [

N!
y ikh

N
1 wNN!
y ik−1h

N
21−

1
N

dN
ik F

Vi
k 2 Vi

k−1

|grad f| dm

[
N! (wNN!)

1− 1
N (4N+5)

N
2

hN−1 1C 1N
2
222(2−

1
N)

F
Vi
k 2 Vi

k−1

|grad f| dm.

It follows that

V(Qnf; IN) [
hN−1

N!
C
nNN!

i=1
C
N

k=1

N! (wNN!)
1− 1

N (4N+5)
N
2

hN−1 1C 1N
2
222(2−

1
N)

F
Vi
k 2 Vi

k−1

|grad f| dm

[
(wNN!)

1− 1
N (4N+5)

N
2

1C 1N
2
222(2−

1
N)

C
nNN!

i=1
C
N

k=1
F
Vi
k 2 Vi

k−1

|grad f| dm.

Since each V i
k 2 V i

k−1 contains at most [2(N+1)!−2(N−1)!] N=
2N! [(N+1) N−1] simplices, we see that

C
nNN!

i=1
C
N

k=1
F
Vi
k 2 Vi

k−1

|grad f| dm [ 2N! [(N+1) N−1] F
IN
|grad f| dm.

Thus (6) is true in the case of f ¥W1, 1(IN).
For an arbitrary f ¥ BV(IN), by Theorem 1.17 in ref. 9, there exists a

sequence {fj} … C.(IN) such that

lim
jQ.

||fj−f||=0

and

lim
jQ.

V(fj; IN)=V(f; IN).

From the above proof, (6) is valid for each fj. Since for each n we have
limjQ. ||Qnfj−Qnf||=0, using Theorem 1.9 of ref. 9, we have

V(Qnf; IN) [ lim inf
jQ.

V(Qnfj; IN)

[ lim
jQ.

CBVV(fj; IN)=CBVV(f; IN). L
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Now we prove the strong convergence of the sequence {Qnf} to f
under the BV-norm for sufficiently smooth f.

Theorem 3.2. As hQ 0, there hold

||Qnf−f||BV=O(h), -f ¥ C2(IN), (7)

||Qnf−f||BV=o(1), -f ¥W1, 1(IN). (8)

Proof. As before let ei be the i th simplex of Tn with the naturally
ordered vertices v i0,..., v

i
N, v

i
k=v ik−1+hu

s(k), k=1,..., N, where us(k) is the
s(k)th canonical basis of RN for some permutation s of {1, 2,..., N}, and
let Qnf(v

i
k)=q i

k. Then, by Lemma 3.1,

grad Qnf(x)=C
N

k=1

q i
k−q

i
k−1

h
us(k), x ¥ ei.

Thus, since Qnf−f ¥W1, 1(IN),

V(Qnf−f; IN)= C
nNN!

i=1
F
ei
|grad(Qnf−f)(x)| dm(x)

= C
nNN!

i=1
F
ei

: C
N

k=1

q i
k−q

i
k−1

h
us(k)−grad f(x) : dm(x)

= C
nNN!

i=1
F
ei

: C
N

k=1

1q i
k−q

i
k−1

h
−
“f(x)
“xs(k)
2 us(k) : dm(x)

= C
nNN!

i=1
F
ei

=C
N

k=1

1q i
k−q

i
k−1

h
−
“f(x)
“xs(k)
22 dm(x)

=C
1
+C

2

where ;1 is the sum of the integrals over all simplices ei all of whose ver-
tices are interior to IN and ;2 is the remaining sum. Let ei be a simplex
in ;1. Then for k=0, 1,..., N, from Taylor’s expansion, we have

f(x)=f(v ik)+(grad f(v
i
k))

T (x−v ik)+O(|x−v
i
k |

2),

from which it follows that

q i
k —

1
m(V i

k)
F
Vi
k

f(x) dm(x)=f(v ik)+O(h
2)
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because >Vi
k
(grad f(v ik))

T (x−v ik) dm=0 due to the fact that V i
k is sym-

metric about v ik. Hence for k=1,..., N,

q i
k−q

i
k−1

h
=
f(v ik)−f(v

i
k−1)

h
+O(h). (9)

Since v ik=v ik−1+hu
s(k),

f(v ik)−f(v
i
k−1)

h
=
“f(v ik)
“xs(k)

+O(h). (10)

Combining (9) and (10), and using the fact that

“f(x)
“xs(k)

=
“f(v ik)
“xs(k)

+O(|x−v ik |),

we get

F
ei

=C
N

k=1

1q i
k−q

i
k−1

h
−
“f(x)
“xs(k)
22 dm(x)=O(h) m(ei),

which implies that ;1=O(h). On the other hand, since the Lebesgue
measure of the union of all the simplices in ;2 is of order O(h) and since
the integrand is bounded, ;2=O(h). Thus (7) is true. And (8) follows
from (7), Theorem 3.1, and a density argument. L

Remark 3.1. Theorem 3.2 improves Proposition 2.3 under a mild
smooth condition on f. It should be noted that although it satisfies (1),
Ulam’s method does not satisfy (7), which makes the piecewise linear
Markov approximation method more appealing in the numerical compu-
tation related to Markov operators.

4. SOME APPLICATION

In this section we give an application of the main result. The general
setting is that we want to calculate a fixed density of a Markov operator
P: L1(IN)Q L1(IN). Assume that P satisfies the property that there are two
positive constants a < 1 and b such that

||Pf||BV [ a ||f||BV+b ||f||, -f ¥ BV(IN). (11)

The importance of the above inequality for the existence of fixed densities
of Markov operators was first indicated in the seminal paper of Lasota and
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Yorke (13) for proving the existence of fixed densities of a class of Frobenius–
Perron operators in ergodic theory, and then used, among others, in
refs. 14, 10, 5, 6, and 15.

4.1. A Finite Element Method

Associated with the Kuhn triangulation Tn and the corresponding
Markov approximation Qn, we propose a finite element scheme for com-
puting a fixed density of a Markov operator P: L1(IN)Q L1(IN) as follows:
Find a fixed density fn ¥ Dn such that

Pnfn=fn, (12)

where Pn — QnP. Since Pn is Markov operator from Dn into itself, one sees
from the Frobenius–Perron theory for nonnegative matrices that (17) is
solvable. Moreover, using Theorems 3.1 and 3.2, we have

Theorem 4.1. Suppose that CBVa < 1 where CBV is the same as in
Theorem 3.1. If P has a unique fixed density fg ¥ BV(IN), then

lim
nQ.

||fn−fg||=0,

||fn−fg||BV=O(||Qnfg−fg||BV).

Moreover

||fn−fg||BV=o(1), if fg ¥W1, 1(IN),

||fn−fg||BV=O(h), if fg ¥ C2(IN).

Proof. From (11), the definition of the BV-norm, the fact that P and
Qn preserve the L1-norm of f, and Theorem 3.1, we have

||fn ||BV=||QnPfn ||BV [ CBV(a ||fn ||BV+b).

Hence ||fn ||BV [ CBVb/(1−CBVa) uniformly, which implies that fn has a
L1-convergent subsequence which converges to a fixed density of P. Since
fg is the unique fixed density of P, it turns our fn actually converges to fg

under the L1-norm. Now from

fn−fg=QnP(fn−fg)+Qnfg−fg,
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we see that

||fn−fg||BV [
1

1−CBVa
(CBVb ||fn−fg||+||Qnfg−fg||BV).

Thus, using a quasi-compactness argument as in ref. 5 and Theorem 3.2,
we get the last two conclusions. L

4.2. A Numerical Example

We present some numerical experiments with the piecewise linear finite
element method for computing fixed densities of aMarkov integral operator

Pf(x)=F
1

0
K(x, y) f(y) dy, f ¥ L1(0, 1), (13)

where the stochastic kernel

K(x, y)=
yexy

ey−1
, (14)

as compared with Ulam’s piecewise constant method. For the simplicity we
divide [0, 1] into n equal subintervals Ii=[xi−1, xi] with length h=1/n.
Let fi be the average value of f over Ii. Then Ulam’s scheme is given by

Q0
hf(x)=C

n

i=1
fiqIi (x), (15)

where qIi (x)=1 if x ¥ Ii and 0 otherwise, and our method uses

Q1
hf(x)=f1e

1
0(x)+C

n−1

i=1

fi+fi+1

2
e1i (x)+fne

1
n(x), (16)

where

e1i (x)=w 1x−xi
h
2 , i=0, 1,..., n

with w(x)=(1− |x|) q[−1, 1].
In the implementation we let n=2r with r=2, 3,..., L for some given L.

The integration technique of the trapezoid rule was employed for the evalua-
tion of the matrix representation of P0

h=Q0
hP and P1

h=Q1
hP with respect

to the density basis {qIi/h} and the density basis {e1i /||e
1
i ||}, respectively. For
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Table I. L1-Norm Errors

L1-norm errors

number of subinterval piecewise constant method piecewise linear method

22 3.399×10−2 1.564×10−2

23 1.702×10−2 4.167×10−3

24 8.515×10−3 1.076×10−3

25 4.258×10−3 2.733×10−4

26 2.129×10−3 6.889×10−5

27 1.064×10−3 1.729×10−5

28 5.322×10−4 4.333×10−6

29 2.611×10−4 1.084×10−6

j=0, 1, because of the integration error, each column of the matrix was
normalized so that the resulting matrix P̃ j

h is a stochastic one. Then the
direct iteration was used to find a normalized fixed nonnegative vector v jh
of (P̃ j

h)
T, starting from the unit positive vector of the same components.

The convergence was obtained after a couple of iterations (less than 10 for
all dimensions in the computation).

Since the expression of the fixed density fg of P is unknown, for
j=0, 1, we used ||f j

2h−f
j
h || and ||f

j
2h−f

j
h ||BV to estimate the L1-norm error

||fg−f j
h || and the BV-norm error ||fg−f j

h ||BV of f j
h from the piecewise

constant method and the piecewise linear method, respectively.
The computational results from Tables I and II show that for the piece-

wise linear method, the BV-norm error reduces about the same order as h,
which is consistent with our theoretical result. Furthermore, the L1-norm
error reduces at the order of h2, which can be explained with the fact that

Table II. BV-Norm Errors

BV-norm errors

number of subinterval piecewise constant method piecewise linear method

22 3.059×10−1 1.233×10−1

23 2.894×10−1 6.621×10−2

24 2.810×10−1 3.432×10−2

25 2.768×10−1 1.747×10−2

26 2.746×10−1 8.813×10−3

27 2.736×10−1 4.426×10−3

28 2.730×10−1 2.218×10−3

29 2.728×10−1 1.110×10−3
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||f−Q1
hf||=O(h2). On the other hand, although the piecewise constant

method does converge in the L1-norm, it is not so under the BV-norm since
J1

0 (f−Q
0
hf) \J1

0 f in general (see Proposition 3.3 in ref. 5).
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